Neural differentiation of choroid plexus epithelial cells: role of human traumatic cerebrospinal fluid

نویسندگان

  • Elham Hashemi
  • Yousef Sadeghi
  • Abbas Aliaghaei
  • Afsoun Seddighi
  • Abbas Piryaei
  • Mehdi Eskandarian Broujeni
  • Fatemeh Shaerzadeh
  • Abdollah Amini
  • Ramin Pouriran
چکیده

As the key producer of cerebrospinal fluid (CSF), the choroid plexus (CP) provides a unique protective system in the central nervous system. CSF components are not invariable and they can change based on the pathological conditions of the central nervous system. The purpose of the present study was to assess the effects of non-traumatic and traumatic CSF on the differentiation of multipotent stem-like cells of CP into the neural and/or glial cells. CP epithelial cells were isolated from adult male rats and treated with human non-traumatic and traumatic CSF. Alterations in mRNA expression of Nestin and microtubule-associated protein (MAP2), as the specific markers of neurogenesis, and astrocyte marker glial fibrillary acidic protein (GFAP) in cultured CP epithelial cells were evaluated using quantitative real-time PCR. The data revealed that treatment with CSF (non-traumatic and traumatic) led to increase in mRNA expression levels of MAP2 and GFAP. Moreover, the expression of Nestin decreased in CP epithelial cells treated with non-traumatic CSF, while treatment with traumatic CSF significantly increased its mRNA level compared to the cells cultured only in DMEM/F12 as control. It seems that CP epithelial cells contain multipotent stem-like cells which are inducible under pathological conditions including exposure to traumatic CSF because of its compositions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی کیفی و کمی بیان پروتئین‌ آکواپورین1 در شبکه کوروئید رت نژاد سویتار

Abstract Background: Choroid plexus (CP) is a branched structure made up of a single layer of epithelial cells and blood capillaries, forming the blood-CSF-barrier. The CSF (cerebrospinal fluid) is mainly produced from the CP. Aquaporin1 (AQP1), water channels that are highly expressed on the apical side of the membrane in choroid plexus, have a major role in mediating water transport across th...

متن کامل

The choroid plexus-cerebrospinal fluid interface in Alzheimer's disease: more than just a barrier

The choroid plexus is a complex structure which hangs inside the ventricles of the brain and consists mainly of choroid plexus epithelial (CPE) cells surrounding fenestrated capillaries. These CPE cells not only form an anatomical barrier, called the blood-cerebrospinal fluid barrier (BCSFB), but also present an active interface between blood and cerebrospinal fluid (CSF). CPE cells perform ind...

متن کامل

Hes genes and neurogenin regulate non-neural versus neural fate specification in the dorsal telencephalic midline.

The choroid plexus in the brain is unique because it is a non-neural secretory tissue. It secretes the cerebrospinal fluid and functions as a blood-brain barrier, but the precise mechanism of specification of this non-neural tissue has not yet been determined. Using mouse embryos and lineage-tracing analysis, we found that the prospective choroid plexus region initially gives rise to Cajal-Retz...

متن کامل

Immunoreactivity for GABA, GAD65, GAD67 and Bestrophin-1 in the Meninges and the Choroid Plexus: Implications for Non-Neuronal Sources for GABA in the Developing Mouse Brain

Neural progenitors in the developing neocortex, neuroepithelial cells and radial glial cells, have a bipolar shape with a basal process contacting the basal membrane of the meninge and an apical plasma membrane facing the lateral ventricle, which the cerebrospinal fluid is filled with. Recent studies revealed that the meninges and the cerebrospinal fluid have certain roles to regulate brain dev...

متن کامل

The neural milieu of the developing choroid plexus: neural stem cells, neurons and innervation

The choroid plexus produces cerebrospinal fluid and plays an important role in brain homeostasis both pre and postnatally. In vitro studies have suggested that cells from adult choroid plexus have stem/progenitor cell-like properties. Our initial aim was to investigate whether such a cell population is present in vivo during development of the choroid plexus, focusing mainly on the chick choroi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017